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Abstract
A class of transparent potentials (i.e., potentials with trivial scattering operator
S = 1) for the three-dimensional Schrödinger equations is studied. We
find the underlying group explaining the transparency phenomenon for these
Hamiltonians.

PACS numbers: 03.65.Nk, 03.65.Fd, 02.20.Sv

As is well known [1], a modified Pöschl–Teller potential hole has a vanishing reflection
coefficient for all energies. It turns out that there is an infinite family of one-dimensional
potentials for which the scattered wave has no reflected part [2–10]. Because of this property,
these potentials are called reflectionless. Another remarkable property is that [11–15] the
reflectionless potentials give rise to soliton solutions of nonlinear equations such as Korteweg–
de Vries, sine-Gordon, nonlinear Schrödinger etc.

A method of constructing reflectionless potentials for the one-dimensional Schrödinger
equation was first developed by Kay and Moses [2]. This method is based on the inverse
scattering problem [16]. Other methods to find the reflectionless potentials are to use the
Darboux techniques: the Darboux transformation, the supersymmetric quantum mechanics
etc.

All the methods mentioned above apply to the one-dimensional Schrödinger equation
as well as the radial Schrödinger equation with a central potential. In particular, a family
of potentials yielding the scattering phase shift (of given angular momentum) equal to zero
for all energies [8, 17, 18] has been constructed. Further it was shown in the frame of the
inverse scattering problem that there exists a family of potentials for which all phase shifts are
identically zero at fixed energy [16, 19, 20]. These potentials are called transparent [16]. The
inverse scattering problem at fixed energy for the two-dimensional Schrödinger equation with
potentials in a certain class that are transparent at a given energy was studied in [21].

In [22] we described a general method which allows pure algebraic calculation of
S-matrices for the systems whose Hamiltonians are related to the Casimir operators Ci of
some non-compact group G,

H = f (Ci), (1)
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or

H = f (Ci)|H, (2)

where H are the subspaces occurring in the subgroup reductions. Namely, the S-matrices for
the systems under consideration are associated with the intertwining operators A between the
Weyl equivalent representations Uχ and Uχ̃ of G,

S = A (3)

or

S = A|H, (4)

respectively. (The representations Uχ and Uχ̃ have the same Casimir eigenvalues. Such
representations are called Weyl equivalent.) At this stage we note that the operator A is said
to intertwine the representations Uχ and Uχ̃ of the group G if the relation

AUχ(g) = Uχ̃(g)A for all g ∈ G (5)

or

AdUχ(b) = dUχ̃(b)A for all b ∈ g (6)

holds, where dUχ and dUχ̃ are the corresponding representations of the algebra g of G.
Equations (5) and (6) have much restriction power, determining the intertwining operator;
one can easily evaluate, taking advantage of group-theoretic techniques, the S-matrix. This
algebraic technique can be also used in the opposite procedure, i.e., given a scattering matrix
related to an intertwining operator of some algebra g as (3) or (4) to look for a representation of
g such that the operator H defined by (1) or (2) be a meaningful Hamiltonian. In particular, in
this way we have constructed an infinite family of reflectionless potentials for the Schrödinger
equation in one dimension [23].

In the present paper we are interested in applying the method to the three-dimensional
Schrödinger equation. Our motivation for such a study can conveniently be understood by
considering the following statement made by Matveev [24]: “The explicit multidimensional
Schrödinger operator with trivial scattering operator and nontrivial potentials seems to be
unknown.” We show that the non-spherically symmetric potentials

V (1)(x) = a0
n2 − 1

4

2r2 sin2 θ sin2 ϕ
(7)

and

V (2)(x) = a0
n2 − 1

4

2r2 cos2 θ
, (8)

with n = 0, 1, 2, . . . , are transparent for all energies. Here r, θ, ϕ are spherical coordinates,
and a0 is defined in terms of a mass parameter M by a0 = h̄2/M . Henceforth we will set
M = h̄ = 1.

The key to the group-theoretical construction of transparent potentials for the Schrödinger
equation in three dimensions lies in the facts that (a) the N-dimensional Schrödinger equation
with a null potential admit the Euclidean group in N dimensions ISO(N) as a (maximal)
symmetry group (or equivalently, the Hamiltonian H for a free particle in N dimensions is a
multiple of the second-order Casimir operator C of ISO(N)) and (b) the null potential cause no
scattering at all, i.e., S = 1. This suggests the following assumption that a certain transparent
potentials for the Schrödinger equation in three dimensions must be related to ISO(N),N > 3.
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We show that the Hamiltonians corresponding to (7) and (8) are related to ISO(4) in the sense
that the following relation holds:

H(i) = − 1
2C

∣∣
H(i) , i = 1, 2, (9)

where C is the second-order Casimir operator of ISO(4), while H(1) and H(2) are subspaces
occurring in the reductions ISO(4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2) and ISO(4) ⊃ SO(4) ⊃
SO(2) × SO(2), respectively.

Let us start the discussion with the fact that [25, 26] the group ISO(4), i.e., the semidirect
product T4 � SO(4) of the four-dimensional translation group T4 and the rotation group
SO(4), can be regarded as the group of real fifth-order matrices having the form

g =
(

k a

0 1

)
(10)

where 0 is a row with four zero elements, while a is a four-dimensional column vector.
It contains the rotations k ∈ SO(4) and the translations a ∈ T4. The unitary irreducible
representations (UIRs) of ISO(4) can be derived by the induced representation method
introduced in [27] for analyzing the Poincare group ISO(3, 1). It is known that they are
labeled by the pair (ρ, ν), where ν = 0, 1, 2, . . . , while 0 < ρ < ∞.

We want to study scattering problems related to the UIRs of ISO(4) with ν = 0, in the
sense that relation (2) hold. The Schrödinger equation for such systems is essentially
a condition imposed on the carrier space to be irreducible. Hence in order to find
the Hamiltonians for the systems under considerations we should look for a reducible
representation of ISO(4) containing the (ρ, 0) representations. To this end, let us consider
a quasi-regular representation T (g) of ISO(4) realized in the Hilbert space of the square-
integrable functions f (x) on E4. Generally, one can use for the construction of the quasi-
regular representation the carrier space L2(E4, dµ) with any quasi-invariant measure dµ(x)

on E4. They are given by [26]

T (g)f (x) = (dµ(g−1x)/dµ(x))1/2f (g−1x), (11)

with inner product

(f, f ′) =
∫

f (x)f ′(x) dµ(x). (12)

We can, without loss of generality, put

dµ(x) = h(x) dx, (13)

where dx = dx1 dx2 dx3 dx4. The requirement that the measure is quasi-invariant implies only
the condition

h(x) � 0.

Since dx is an invariant measure on E4, then formula (11) can be written in the form

T (g)f (x) = (h(g−1x)/h(x))1/2f (g−1x). (14)

We denote by {gij (t)}, i < j, i, j = 1, 2, 3, 4, the one-parameter subgroups of ISO(4)

consisting of rotations in the i–j -planes, that is, of transformations of the form

x ′
k = xk, k �= i, j, x ′

i = xi cos t + xj sin t, x ′
j = −xi sin t + xj cos t, (15)

while by {gi(t)}, i = 1, 2, 3, 4, the one-parameter subgroups of ISO(4) consisting of
translations along the i-axes, that is, of transformations of the form

x ′
k = xk, k �= i, x ′

i = xi + t. (16)
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As is well known [25], given a representation of a group, one can always obtain infinitesimal
operators via the one-parameter subgroups. Performing this for the representation (14), we
find

Jij = xi

∂

∂xj

− xj

∂

∂xi

+
1

2h

(
xi

∂h

∂xj

− xj

∂h

∂xi

)
(17)

= h−1/2(x) ◦
(

xi

∂

∂xj

− xj

∂

∂xi

)
◦ h1/2(x) (18)

for the one-parameter subgroups {gij (t)} and

Ii = − ∂

∂xi

− 1

2h

∂h

∂xi

(19)

= h−1/2(x) ◦
(

− ∂

∂xi

)
◦ h1/2(x), (20)

for the one-parameter subgroups {gi(t)}, where ◦ denotes the composition of operators. If we
compute the quadratic Casimir operator C,

C =
4∑

i=1

I 2
i , (21)

it becomes

C = h−1/2(x) ◦
(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

)
◦ h1/2(x). (22)

At this stage we note that the group ISO(4) admits two Casimir operators (quadratic and
quartic). It turns out that the quartic Casimir operator (i.e., the Pauli–Lubanski-type invariant)
is zero for the present representation.

The quasi-regular representation T (g) of the group ISO(4) is decomposed onto the direct
integral of (ρ, 0) representations of ISO(4) [25]. Hence, the (ρ, 0) representation of ISO(4) can
be realized as a subrepresentation of the quasi-regular representation T (g). Such realization
is obtained if all functions f are eigenfunctions of the Casimir operator (22),

Cfρ = −ρ2fρ. (23)

In other words, we consider the (ρ, 0) representation of ISO(4) realized on the eigenfunctions
of the Casimir operator given by (22).

We are now in a position to extract potentials from the Casimir operator.

(i) The ISO(4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2) reduction. Therefore, the basis functions are
obtained as the common set of eigenfunctions of the Casimir operators of the subgroups in the
considered reduction, i.e.

CSO(4)f
(1)
ρlsn = −l(l + 2)f

(1)
ρlsn (24)

CSO(3)f
(1)
ρlsn = −s(s + 1)f

(1)
ρlsn (25)

J 2
12f

(1)
ρlsn = −n2f

(1)
ρlsn, (26)

where CSO(4) and CSO(3) are the Casimir operators of SO(4) and SO(3), respectively,

CSO(4) = 1

2

4∑
i,j=1

J 2
ij , CSO(3) = 1

2

3∑
i,j=1

J 2
ij (27)
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It is easy to see that

CSO(4) = h−1/2(x) ◦
[
x2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

)
− �(� + 2)

]
◦ h1/2(x)

CSO(3) = h−1/2(x) ◦
[

x2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
− L(L + 1)

]
◦ h1/2(x)

where we define x2 = x2
1 + x2

2 + x2
3 + x2

4 , x2 = x2
1 + x2

2 + x2
3 and

� =
4∑

ı=1

xi

∂

∂xi

, L =
3∑

ı=1

xi

∂

∂xi

.

Since CSO(4), CSO(3) and J 2
12 are sought to be diagonal, we introduce in place of x1, x2, x3, x4

the variables r, θ, ϕ, β via

x1 = r sin θ sin ϕ sin β x2 = r sin θ sin ϕ cos β

x3 = r sin θ cos ϕ x4 = r cos θ

with 0 � θ, ϕ < π, 0 � β < 2π . In these coordinates the invariant measure on E4 is given
by

dx = r3 sin2 θ sin ϕ dr dθ dϕ dβ. (28)

It is clear that we must construct the representation on the Hilbert space H with the
measure dµ = r2 sin θ dr dθ dϕ dβ, where β is an auxiliary variable. To this end, we can
make use of the freedom of choosing h(x). Equations (13) and (28) tell us that we have to set
h(x) as

h(x) = (
x2

1 + x2
2

)−1/2
. (29)

With this choice one has

CSO(4) =
(

∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1

sin2 θ sin2 ϕ

(
1

4
+

∂2

∂β2

)
+

3

4

CSO(3) = ∂2

∂ϕ2
+

1

sin2 ϕ

(
1

4
+

∂2

∂β2

)
+

1

4

J 2
12 = ∂2

∂β2

and

C = ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1

r2 sin2 θ sin2 ϕ

(
1

4
+

∂2

∂β2

)
.

(30)

Let H(1) be a subspace spanned by f
(1)
ρlsn with fixed n. Then the operator C restricted to

H(1) becomes a differential operator in r, θ, ϕ; it is found that

C|H(1) = ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1
4 − n2

r2 sin2 θ sin2 ϕ
. (31)

Hence the Hamiltonian

H(1) = −1

2
∇2 +

n2 − 1
4

2r2 sin2 θ sin2 ϕ
, n = 0, 1, 2, . . . , (32)
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is related to ISO(4) in the sense that the following relation holds:

H(1) = − 1
2C

∣∣
H(1) . (33)

That means that the (ρ, 0) representation of ISO(4) allows us to describe fixed energy
eigenstates of a family of Hamiltonians (32) with different values of the potential parameters.

Due to the extra integral of motions

L̃2 = L2 +
n2 − 1

4

sin2 θ sin2 ϕ
(34)

and

L̃2
z = L2

z +
n2 − 1

4

sin2 ϕ
, (35)

where

L2 = −
(

∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
, L2

z = − ∂2

∂ϕ2
, (36)

Hamiltonian (32) is separable in the spherical coordinate system. Moreover, it is not difficult
to see that L̃2 and L̃2

z are related to CSO(4) and CSO(3) in the sense that

L̃2 = −(
CSO(4) − 3

4

)∣∣
H(1) , L̃2

z = −(
CSO(3) − 1

4

)∣∣
H(1) . (37)

It is worth noticing that there is a simple connection between the dynamics in the three
dimensions governed by (32) and a free motion in four dimensions:

H(1) = (r sin θ sin ϕ)1/2 ◦ H(0) ◦ (r sin θ sin ϕ)−1/2|H(1)

ψ(0)(r, θ, ϕ, β) = 1√
2π

(r sin θ sin ϕ)1/2ψ(1)(r, θ, ϕ) exp(inβ)

where H(0) and ψ(0) are a free Hamiltonian in four dimensions and its eigenfunctions,
respectively. It is clear from this remark that the potentials in (32) will be of necessity
transparent. Finally, we give for reference the expression for the wavefunctions ψ(1),

ψ(1)(r, θ, ϕ) = Rkl(r)Y (1)
lsn(θ, ϕ), (38)

where Rkl(r) is the radial part of the wavefunctions, while Y (1)
lsn(θ, ϕ) is the angular part of it:

Rkl(r) =
√

k/rJl+1(kr), (39)

Y (1)
lsn(θ, ϕ) = χ(1) sins+ 1

2 θ sinn+ 1
2 ϕC1+s

l−s (cos θ)C
1
2 +n

s−n (cos ϕ), (40)

χ(1) =
[

22s+2n(l − s)!(s − n)!(s!)2�2
(

1
2 + n

)
(1 + l)(1 + 2s)

(l + s + 1)!(s + n)!

] 1
2

(41)

with k = √
2E. Here Cλ

n(t) are the Gegenbauer polynomials [28].
Observe that the angle-function Y (1)

lsn(θ, ϕ) depends on the details of the dynamics. This is
a result of very general properties, shared by all non-central Hamiltonians. It is also worthwhile
to note that the wavefunctions ψ(1) are related to matrix elements of (ρ, 0) representations of
ISO(4) in the bases corresponding to ISO(4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2) reduction [25].
Namely, they are connected with associated spherical functions of (ρ, 0) with ρ = k.
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(ii) The ISO(4) ⊃ SO(4) ⊃ SO(2) × SO(2) reduction. Now, the reduction conditions are

CSO(4)f
(2)
ρlmn = −l(l + 2)f

(2)
ρlmn (42)

J 2
12f

(2)
ρlmn = −m2f

(2)
ρlmn (43)

J 2
34f

(2)
ρlmn = −n2f

(2)
ρlmn. (44)

The parametrization that we see for x1, x2, x3, x4 must be such as to make CSO(4), J 2
12 and J 2

34
particularly simple. We define them as follows:

x1 = r sin θ sin ϕ x2 = r sin θ cos ϕ

x3 = r cos θ sin β x4 = r cos θ cos β,

with 0 � θ < π/2, 0 � ϕ, β < 2π . In these coordinates the invariant measure on E4 is given
by

dx = r3 sin θ cos θ dr dθ dϕ dβ. (45)

To get the Hilbert space H with the measure dµ(x) = r2 sin θ dr dθ dϕ dβ, one has to set
h(x) as

h(x) = (
x2

3 + x2
4

)−1/2
.

With this choice we have

CSO(4) =
(

∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1

cos2 θ

(
1

4
+

∂2

∂β2

)
+

3

4
(46)

J 2
12 = ∂2

∂ϕ2
, J 2

34 = ∂2

∂β2
(47)

C = ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1

r2 cos2 θ

(
1

4
+

∂2

∂β2

)
. (48)

It is easy to check that the restriction of C to a subspace H(2) spanned by f
(2)
ρlmn, for given

n, yields

C|H(2) = ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1
4 − n2

r2 cos2 θ
. (49)

Hence the Hamiltonian

H(2) = −1

2
∇2 +

n2 − 1
4

2r2 cos2 θ
, n = 0, 1, 2, . . . , (50)

is related to ISO(4) in the sense that the following relation holds:

H(2) = − 1
2C

∣∣
H(2) . (51)

In this case the operator

L̃2 = L2 +
n2 − 1

4

cos2 θ
(52)
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is responsible for the separability of H(2) in the spherical coordinate. Moreover, it is not
difficult to see that L̃2 is related to CSO(4):

L̃2 = −(
CSO(4) − 3

4

)∣∣
H(2) . (53)

The second integral of motion is, of course, L2
z = −(∂2/∂ϕ2) (due to azimuthal symmetry).

Finally, we give for reference the expression for the scattering wavefunctions

ψ(2)(r, θ, ϕ) = Rkl(r)Y (2)
lmn(θ, ϕ), (54)

where Rkl(r) is given by (39), while the angle-function Y (2)
lmn(θ, ϕ) is given by

Y (2)
lmn(θ, ϕ) = χ(2) sinm θ cosn+ 1

2 θP(m,n)
λ (cos 2θ) exp(−imϕ), (55)

with 2λ = l −m−n. Here P(α,β)
n (t) are Jacobi polynomials [28]. The normalization constant

χ(2) is given by

χ(2) =
[
(m + n + λ)!λ!(2λ + m + n + 1)

π(m + λ)!(n + λ)!

] 1
2

. (56)

It is also worth noting that the functions ψ(2)(x) are related to matrix elements of (ρ, 0)

representations of ISO(4) in the bases corresponding to ISO(4) ⊃ SO(4) ⊃ SO(2) × SO(2)

reduction [25].
At the end, we remark that potentials (7) and (8 ) belong to a class of superintegrable

potentials [29]. The scattering problems for these potentials have been investigated by the
path integral method in [30]. Those authors do not discuss the transparency phenomenon.
However, from equations (19) and (21) of [30] one may conclude that the potentials under
consideration are transparent. For example, putting α = γ = 0 and β = (4n2 − 1)/8 in (1)
of [30] we come to the potential in (8). In this case the S-matrix (see equation (19) of [30]) is
reduced to

S(k′′, k′) = (k′k′′)−1δ(k′′ − k′)
∞∑
l=0

∞∑
m=0

Clm(sin ϑ ′′)1+m(cos ϑ ′′)n+ 1
2 P

(1+m,n)
l (cos 2ϑ ′′)

× sin

(
φ′′

2

)
cos

(
φ′′

2

)
P

( 1
2 , 1

2 )
m (cos φ′′)(sin ϑ ′)1+m(cos ϑ ′)n+ 1

2 P
(1+m,n)
l (cos 2ϑ ′)

× sin

(
φ′

2

)
cos

(
φ′

2

)
P

( 1
2 , 1

2 )
m (cos φ′)

with

Clm = 4(n + m + 2l + 2)l!(n + m + l + 1)!�2(m + 2)

(n + l)!(m + l + 1)!�2(m + 3/2)
.

Taking into account (21) of [30], we obtain

S(k′′, k′) = (k′k′′)−1δ(k′′ − k′)δ(cos ϑ ′′ − cos ϑ ′)δ(φ′′ − φ′)
= δ(k′′ − k′).

Acknowledgment

It is a pleasure to acknowledge useful discussions with A Ventura.



Non-spherically symmetric transparent potentials for the three-dimensional Schrödinger equation 11615

References
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